1-70 EB Peak Period Shoulder Lane Project

Project Number: NHPP $0703-401$
Project Code: 19474

Technical Team Meeting \#7

November 18, 2013
CDOT I-70 Mountain Corridor | HDR Engineering, Inc.

1. INTRODUCTIONS AND OVERVIEW

- Project Schedule
- Other Project Efforts

2. RESPONSES TO TECHNICAL TEAM ISSUES

- Highway 103 bridge
- Online Meeting Update
- Accident Data
- Definition of Interim
- ROD Compatibility

3. OUTCOMES FROM ISSUES TASK FORCE MEETINGS
4. FOLLOW UP

- SH 103 Bridge/Interchange
- I-70 Bridges

6. REVIEW PROPOSED SOLUTIONS

- Managed Lane Access
- Tolling
- ATM
> Signing

7. DEVELOP CRITERIA FOR:

- Drainage
- Greenway
- Pullout Locations
- Snow Removal/Maintenance
- Noise

8. NEXT STEPS

＞SAFETY

STEP 1
 Define Desired Outcomes and Actions

＞MOBILITY

＞CONSTRUCTABILITY
＞COMMUNITY
＞ENVIRONMENT
＞ENGINEERING CRITERIA AND

```
STEP 2
Endorse the Process
```


STEP 3
 Establish Criteria

STEP 4
Develop Alternatives and Options

STEP 5
Evaluate，Select and
Refine Alternatives and
Options

STEP 6
Finalize Documentation
and Evaluation Process

$>$ CONCEPT OF OPERATIONS REPORT

- JANUARY 2014
>PRELIMINARY DESIGN MEETING
-NOVEMBER 2013
>ENVIRONMENTAL ANALYSIS
-JANUARY 2014
$>$ OPEN TO TRAFFIC
- JULY 2015
$>$ Traffic and Revenue > Twin Tunnels > Westbound Tunnel Expansion > AGS $>$ CCC Transportation Visioning

$>$ PARKING LOT

- Highway 103 bridge
- Online Meeting Update
- Accident Background Data
- ROD Compatibility
- Definition of Interim
- EA versus Cat Ex
- Pullout Locations
- Snow removal
- Whole transportation system Including local roads
- Cooperative Agreements (revegetation, greenway, transportation, etc.)
- Enhancement opportunities along creek (revegetation etc.)

Eastbound Accident Data by Season and Day of Week

- 72\% of fixed object accidents occur in winter
- 73% of these occur on weekdays
- 68% of rear end accidents occur in winter
- 49\% of these occur on Sundays

Table 6
Average Speed of Predominant Crash Types - Eastbound

	Guardrail / Concrete Barrier / Embankment / Cable Rail			Rear End			Sideswipe same direction		
Time of Day	Weekday (M-F)	Weekend (Sat Sun)	All	Weekday (M-F)	Weekend (Sat Sun)	All	Weekday (M-F)	Weekend (Sat Sun)	All
Daytime	59.1	57.9	58.8	35.8	36.5	36.3	50.5	48.2	49.5
Nighttime	61.5	65.8	62.9	36.0	39.4	38.6	53.0	46.9	49.2

Segment 4
$\sqrt[R G 6]{\beta_{G}}$ RG2 \qquad

Segment 5
SH 70K
Interchange
Curve 9 Fixed Object 7 Interchange Curve 7 Rear-end

MP 242

NOVEMBER 18, 2013	JULY Q ${ }^{\text {cos }}$ AUG		SEP	OCT		NOV		DEC \bigcirc° JAN			FEB	MAR		APRIL		MAY	
	2ND 4 TH	2ND 4 TH	2ND 4 TH	1ST	4TH	2ND	3RD	2ND	3RD	2ND 4 4TH	2ND 4 4TH	2ND	4TH\|	2ND	4TH	2ND	4TH
ISSUES	WEEK	WEEK	WEEK	WEEK		WEEK		WEEK		WEEK	WEEK	WEEK		WEEK		WEEK	
OPERABILITY																	
LEFT VS RIGHT	*	-	-														
ROADWAY DEFINITION																	
DEFINE INTERIM																	
ROADWAY WIDTH		\square	*	\bigcirc													
WIDENING MEDIAN VS. CREEK			*	\bigcirc													
ACCELERATION AND DECELERATION LANES			伟	-													
STRUCTURAL COMPONENTS																	
SH 103 BRIDGE				\square	*		\bigcirc										
1-70 BRIDGES				\square	*		\bigcirc										
RETAINING WALLS																	
			\square	*	\bigcirc												
EMERGENCY RESPONSE																	
			\square	*	\bigcirc												
INTEGRAL COMPONENTS																	
PULL OUT LOCATIONS																	
					\square		*		*	\bigcirc							
SIGNAGE					\square		*		*	\bigcirc							
MANAGED LANE ACCESS					\square		类		Q								
DRAINAGE							\square		*	\bigcirc							
GREENWAY							\square		*	-							
SNOW REMOVAL/ MAINTENANCE							-		*	-							
NOISE							\square		*	-							
INITIAL ENVIRONMENTAL FINDINGS										*	-						
CLASS OFACTION											*		-				
AESTHETICS REVIEW			*	*	*		*		*	*	*		*				
LOCAL ROADWAY NETWORK		-															

Acceleration Lane	A lane adjacent to the primary travel lane that allows drivers to accelerate before merging into traffic on the main road
Active Traffic Management	A method of increasing peak capacity and smoothing traffic flows on busy major highways. Techniques include variable speed limits, hard-shoulder running, ramp-metering and may be controlled by overhead variable message signs.
Auxiliary Lane	Along a highway an auxiliary lane connects entrance and exit ramps, with the entrance ramp or acceleration lane from one interchange leading to the exit ramp or deceleration lane of the next.
Breakdown Lane	A strip of ground with a hard surface beside a major road where vehicles can stop in an emergency.
Deceleration Lane	A lane adjacent to the primary travel lane that allows drivers to pull off the main road and decelerate safely in order to turn or exit without slowing the traffic behind.
Dynamic Toll	A toll per vehicle that increases or decreases depending on the level of congestion in order to maintain the smooth flow of traffic.
EOP	Edge of pavement.
General Purpose Lane	A traffic lane that does not have any restrictions, such as time of day or type of vehicle that may use the lane.
Interim Solution	A capacity improvement on a roadway that will not be a permanent solution.
Managed Lane	In this case, the managed lane operates during a peak period and traffic utilizing that lane will be required to pay a toll.
Median	The central area between divided highway lanes with traffic traveling in opposite directions.
Peak Period Shoulder Lane	This is a lane of traffic that may function either as a shoulder and a managed lane or a shoulder and a general purpose lane, depending on left versus right.
Rumble Strips	A series of raised strips across a road or along its edge that make a loud noise when a vehicle drives over them in order to warn the driver to go slower or that he or she is too close to the edge of the road
Traffic Management Operations	A coordinated approach to road traffic management where ITS traffic data is utilized to provide traffic information across various platforms to allow for more effective incident management and more efficient management of traffic. This could include continual monitoring of video feed from the corridor.

SH 103 Interchange

DRAFT
SH 103-I-70 Widening North vs. South

C	9	Provides access and protects opportunities for enhancements to tourist destinations, community facilities, interstate commerce and also limits disproportionate effects to the community.	- Increases impacts to the City	- Provides opportunity for park improvements which may increase usage of the facility.
	10	Incorporates sustainability by using locally available materials and environmentally-friendly processes	- Not a differentiator	
	11	Protects or creates unique features for the area as a gateway	- Increases impacts to the City parking	- Provides opportunity for park improvements which may increase usage of the facility.
	12	Protects wildlife needs	- Not a differentiator	
	13	Protects Clear Creek	-Less potential for encroachment into creek -Less visual impact for walls	- More potential for creek encroachment - More visual impact from walls -Positively impacts recreational experience
$\because 3$	14	Protects the defining historical elements of Clear Creek County	- No impacts to historical elements	-Park enhancements may lead to a greater awareness and more frequent visits to the water wheel
)	15	Meets CDOT's and industry standards	- Not a differentiator	
	16	Achieves the mountain mineral belt aesthetic guidelines	- No opportunity for park improvements	- Provides opportunity for park improvements
	17	Meets the I-70 Mountain Corridor design criteria	- Not a differentiator	
	18	Preserves opportunities for the AGS and the ultimate preferred alternative	- Not a differentiator	
	19	Adaptable for future changes/projects	- Not a differentiator	

PEAK PERIOD SHOULDER LANE CRITERIA

SH 103 Bridge

ID	Criteria	Options Ranking		Fair ${ }^{\text {chetter }}$ [Best
		Reuse Existing	Clear Span	Two Span
Evaluation Criteria				
1	Addresses safety during PPSL operations	- Not a differentiator		
2	Maintains safety during non-peak times	- Not a differentiator		
3	Improves mobility during peak times	- This option is limited to the existing conditions.	- Improves mobility on SH 103	- Improves mobility on SH 103
4	Minimizes the effort required to maintain the option	- This type of major retrofit would require additional effort to maintain in comparison to a new structure.	- These type of structures can be designed and detailed to provide durability and low maintenance.	- This more traditional type of bridge would provide a very durable structure with minimal maintenance.
5	Enables the project team to achieve the goal of opening PPSL by 1-Jul-15	- Not a differentiator		
6	Creates infrastructure investments that are reasonable to construct and provide the best value for their life cycle, function, and purpose.	- A retrofit of even this magnitude may still provide some initial investment savings. However, life cycle cost analysis will illustrate that it is not a best value. This option also limits the pedestrian and vehicle functions to the existing conditions	- This option is vey expensive and typically warranted when traditional alternatives are not feasible.	- This option is cost effective and provides the best value when considering the life cycle cost. This option provides the most flexibility for the future.
7	Allows for a process to engage and communicate with all the local, regional and national users of the I-70 Mountain Corridor	- Not a differentiator		

8	Creates opportunities to "correct past damage"	- Not a differentiator		
9	Provides access and protects opportunities for enhancements to tourist destinations, community facilities, and interstate commerce.	- Limited to existing conditions	Provides opportunities for aesthetic and mobility enhancements	Provides opportunities for aesthetic and mobility enhancements
10	Incorporates sustainability by using locally available materials and environmentally-friendly processes	- Not a differentiator		
11	Protects or creates unique features for the area as a gateway	- This option will appear as a temporary retrofit bridge.	- This option could be a signature structure.	- This option would meet the corridor guidelines and match well with the rest of this corridor.
12	Protects wildlife needs	- Not a differentiator		
13	Protects Clear Creek	- Not a differentiator		
14	Protects the defining historical elements of Clear Creek County	- Not a differentiator		
15	Meets CDOT's and industry standards	- This option would require some variances, since it is a retrofit with an older structure.	- This option would meet CDOT and industry standards.	- This option would meet CDOT and industry standards.
16	Achieves the mountain mineral belt aesthetic guidelines	- This option is limited to the existing conditions.	- This option would meet the aesthetic guidelines.	- This option would meet the aesthetic guidelines.
17	Meets the I-70 Mountain Corridor design criteria	- This option is limited to the existing conditions.	- This option would meet the design criteria.	- This option would meet the design criteria.
18	Preserves opportunities for the AGS and the ultimate preferred alternative	- This option is limited to the existing conditions.	- This option provides flexibility for AGS and the ultimate preferred alternative.	- This option provides flexibility for AGS and the ultimate preferred alternative.
19	Adaptable for future changes/projects	\bullet This option is limited to the existing conditions.	- This option provides flexibility for future changes.	- This option provides flexibility for future changes.

I-70 BRIDGES

>No Widening Required on Bridges Carrying I-70

>Inadequate Vertical Clearance at East Idaho Springs Bridge
> Lowerl-70
> Replace the Bridge

SIGNAGE

日פVNDIS
EXISTING CONDITIONS

I-70 Visual Sign Inventory - Clear Creek County, Colorado

Sub Index B
Figures 19-36

Figure	From Mile	To Mile	Direction	Figure	From Mile	To Mile	Direction
19A	226.67	226.06	wB	28 A	232.06	231.43	wB
198	226.06	226.67	EB	28B	231.43	232.06	EB
20A	227.25	226.62	wB	29A	232.67	232.04	wB
208	226.62	227.25	EB	29 B	232.04	232.67	EB
21A	227.83	227.21	WB	30A	233.24	232.67	wB
218	227.21	227.83	EB	30B	232.67	233.24	EB
22A	228.37	227.80	WB	31 A	233.85	233.23	WB
228	227.80	228.37	EB	31 B	233.23	233.85	EB
23A	229.03	228.37	WB	32A	234.39	233.85	WB
23B	228.37	229.03	EB	32B	233.85	234.39	EB
24A	229.64	229.02	WB	33A	235.06	234.39	wB
24B	229.02	229.64	EB	33B	234.39	235.06	EB
25A	230.22	229.64	WB	34A	235.66	235.05	wB
25B	229.64	230.22	EB	34B	235.05	235.66	EB
26A	230.86	230.24	wB	35A	236.28	235.66	wB
26B	230.24	230.86	EB	35B	235.66	236.28	EB
27A	231.47	230.86	wB	36A	236.87	236.26	wB
278	230.86	231.47	EB	36B	236.26	236.87	EB

NEW SIGNAGE CONSIDERATIONS

$\stackrel{\text { 「 }}{\substack{4}}$	ACCESS	TOLLING	ATM
3 3 운	FHWA Compliance	Static vs. Dynamic	Lane Use

ACCESS

FHWA Required Signs

LEFT
TOLL
EXPRESS
LANE
ENTRANCE
1 MILE
LEFT
TOLL
EXPRESS
LANE
ENTRANCE
$1 / 2$ MILE

LEFT
TOLL
EXPRESS
LANE
ENTRANCE

EXPRESS LANE

TOLLING

Static vs. Dynamic

LEFT
TOLL
EXPRESS
LANE
ENTRANCE
1 MILE

LEFT
TOLL
EXPRESS
LANE
ENTRANCE
$1 / 2$ MILE

LEFT
TOLL
EXPRESS
LANE
ENTRANCE
1 HILE

LEFT

TOLL
LANE ENTRANCE 12 MILE

SHOULDER
ONLY TOLLLED
SAT-SUN
DEC-MAR
MAY-AUG
11AM - TPM

 dec-mar and MAY-AUG
DYNAMMC

SHOULDER
EXPRESS
LANE

ACTIVE TRAFFIC MANAGEMENT

FLASHING BEACONS

LANE USE SIGNS (LUS)

VARIABLE SPEED LIMIT SIGNS (VSL)

DYNAMIC

EXPRESS
LANE ENTRANCE 2 MILES

RECOMMENDED SIGNAGE

LEFT

TOLL
EXPRESS
LANE
SMNTMWNEE

KENTRFNCE

PEAK PERIOD SHOULDER LANE CRITERIA
DRAFT
SIGNANGE

ID	Criteria	Options Ranking	
Evaluation Criteria			
3	Improves mobility during peakt times		
4	Minimizes the effortrequired to maintain the option		
	Enables the project team to achieve the goal of opening PPSL b 1-Jul-15		
	Creates infrastructure investments that are reasonable to construct and provide the best value for their life cycle, function, and purpose		
	Allows for a process to engage and communicate with all the local, regional and national users of the I-70 Mountain Corridor		
8	Creates opporturities to "correct past damage"		
	Provides access and protects opportunities for enhancements to tourist destinations, community facilities, and interstate commerce.		
10	Incorporates sustainability by using locally available materials and environmentally-friendly processes		

ID	Criteria	Options Ranking	Fair	Better	Best
Issue Specific Criteria					
1	How does it affect signage?				
Identification of Preferred Option: Summary					

1.
2. Maintains safety during non-peak times
3. Improves mobility and reliability during peak times for both I-70 and the local roadway network
4. Minimizes the effort required to maintain the operation
5. Enable the project team to achieve the goal of opening the PPSL
6. Creates infrastructure investments that are reasonable to construct and provide the best value for their life cycle, function and purpose.
7. Allows for a process to engage and communicate with all the local, regions and national users of the I-70 Mountain Corridor
8. Creates opportunities to "correct past damage"
9. Provides access and protects opportunities for enhancements to tourist destinations, community facilities, interstate commerce and also limits disproportionate effects to the community.
10. Incorporates sustainability by using locally available materials and environmentally- friendly process
11. Protects or creates unique features for the areas as a gateway
12. Protects wildlife needs
13. Protects Clear Creek
14. Protects the defining historical elements of Clear Creek County
15. Meets CDOT's and industry standards
16. Achieves the Mountain Mineral Belt aesthetic guidelines
17. Meets the I-70 Mountain Corridor design criteria
18. Preserves opportunities for the AGS and the ultimate preferred alternative
19. Adaptable for future changes/projects (including Idaho Springs Visioning)
> DRAINAGE
\rangle ??
$>$??
$>$ GREENWAY
> ??
$>$??
> PULLOUTLOCATIONS
> SNOW REMOVAL/ MAINTENANCE
$>$??
$>$??
$>$ NOISE
$>$??
$>$??

>Public Involvement

$>$ Introduction to Online Public Meeting
>www.coloradodot.info/projects/lyomtnppsl
> Local Roadway Network > Issue Taskforce Meetings
> SWEEP, ALIVE and Section 106

FUTURE TECH TEAM MEETINGS
 > DATES

- Monday, 12/16 at Trail Ridge Conference Room in Golden
- Monday, 1/27 at Clear Creek School Commons Area
- Monday 2/24 at Trail Ridge Conference Room in Golden
- Monday 3/24 at Clear Creek School Commons Area

All meetings are scheduled from 8:30am to 2:30pm.

THANK YOU!H!

l-7o EB Peak Period Shoulder Lane Project

Project Number: NHPP 0703-401
Project Code: 19474

Technical Team Meeting \#7

November 18, 2013
CDOT I-70 Mountain Corridor | HDR Engineering, Inc.

RS 1040 Existing

RS 848 Existing

RS 848 Proposed

Water Wheel Trail Cross Sections

RS 533 Proposed

Water Wheel Trail Cross Sections

RS 253 Proposed

Water Wheel Trail Cross Sections
SH 103 INTERCHANGE
Potential Trail and Park Enhancements

Conceptual Site Plan

Potential Trail and Park Enhancements

Stamped Concrete - Plaza Enlargement

Gabion Interpretive Wall
Conceptual Sections and Details

Plaza Area Character Photos

Bridge Options
$>$ Reuse of Existing Bridge
$>$ Clear Span Option
>Two Span Option

REUSE OF EXISTING BRIDGE

TWO-SPAN BRIDGE

Rural Mountainous 4-Lane Interstates

Table 4
Seasonality and Day of Week of Predominant Crash Types - Eastbound

	Guardrail / Concrete Barrier / Embankment / Cable Rail				Rear End				Sideswipe same direction			
Season	Wkd. $(M-F)$	Sat.	Sun.	Total	Wkd. $(M-F)$	Sat.	Sun.	Total	Wkd. (M-F)	Sat.	Sun	Total
Winter (Nov. - Apr.)	54	8	10	$\begin{gathered} 72 \\ (72 \%) \\ \hline \end{gathered}$	53	26	51	$\begin{gathered} 130 \\ (68 \%) \\ \hline \end{gathered}$	17	11	3	31
$\begin{gathered} \text { Summer } \\ \text { (May - Oct.) } \end{gathered}$	19	4	6	29	14	4	43	61	13	4	7	24
Total	$\begin{gathered} 73 \\ (73 \%) \\ \hline \end{gathered}$	12	16	101	67	30	$\begin{gathered} 94 \\ (49 \%) \\ \hline \end{gathered}$	191	30	15	10	55
								55\%				

Table 5
Seasonality and Day of Week of Predominant Crash Types - Westbound

	Guardrail / Concrete Barrier / Embankment / Cable Rail				Rear End				Sideswipe same direction			
Season	Wkd. (M-F)	Sat.	Sun.	Total	Wkd. (M-F)	Sat.	Sun.	Total	Wkd. (M-F)	Sat.	Sun.	Total
$\begin{gathered} \text { Winter } \\ \text { (Nov. - Apr.) } \end{gathered}$	66	10	9	$\begin{gathered} 85 \\ (62 \%) \\ \hline \end{gathered}$	33	22	10	65	10	1	4	15
$\begin{gathered} \text { Summer } \\ \text { (May - Oct.) } \end{gathered}$	37	8	8	53	12	2	5	19	6	1	1	8
Total	$\begin{gathered} 103 \\ (75 \%) \\ \hline \end{gathered}$	18	17	138	45	24	15	84	16	2	5	23
				56\%								

17 Structures Within Project

1.	$\mathrm{E}-14-\mathrm{S} *$	9.	$\mathrm{E}-14-\mathrm{AZ}$
2.	$\mathrm{E}-14-\mathrm{AV}$	10.	$\mathrm{F}-14-\mathrm{H}$
3.	$\mathrm{E}-14-\mathrm{AM}$	11.	$\mathrm{F}-14-\mathrm{G}$ MINOR
4.	$\mathrm{E}-14-\mathrm{AL}$	12.	$\mathrm{F}-14-\mathrm{E} *$
5.	$\mathrm{E}-14-\mathrm{AK}$	13.	$\mathrm{F}-14-\mathrm{N}$
6.	$\mathrm{E}-14-\mathrm{O}$	14.	$\mathrm{~F}-14-\mathrm{X}$
7.	$\mathrm{E}-14-\mathrm{AX} *$	15.	$\mathrm{~F}-14-\mathrm{C} \mathrm{MINOR}$
8.	$\mathrm{E}-14-\mathrm{B} \mathrm{MINOR}$	16.	$\mathrm{~F}-14-\mathrm{Y} *$
		17.	$\mathrm{~F}-14-\mathrm{BV}$

